Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200500407 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China.
Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!