The potential ability to produce cellulase enzymes endogenously was examined in decapods crustaceans including the herbivorous gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes, the amphibious freshwater crab Austrothelphusa transversa, the terrestrial hermit crab, Coenobita variabilis the parastacid crayfish Euastacus, and the crayfish Cherax destructor. The midgut gland of both G. natalis and D. hirtipes contained substantial total cellulase activities and activities of the cellulase enzymes endo-beta-1,4-glucanase and beta-glucosidase. With the exception of total cellulase and beta-glucosidase from D. hirtipes, the enzyme activities within the midgut gland were higher than those within the digestive juice. Hence, the enzyme activities appear to reside predominantly within midgut gland, providing indirect evidence for endogenous synthesis of cellulase enzymes by this tissue. A 900 bp cDNA fragment encoding a portion of the endo-beta-1,4-glucanase amino acid sequence was amplified by RT-PCR using RNA isolated from the midgut gland of C. destructor, Euastacus, A. transversa and C. variabilis. This provided direct evidence for the endogenous production of endo-beta-1,4-glucanase. The 900 bp fragment was also amplified from genomic DNA isolated from the skeletal muscle of G. natalis and D. hirtipes, clearly indicating that the gene encoding endo-beta-1,4-glucanase is also present in these two species. As this group of evolutionary diverse crustacean species possesses and expresses the endo-beta-1,4-glucanase gene it is likely that decapod crustaceans generally produce cellulases endogenously and are able to digest cellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-005-0056-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!