CD97, an epidermal growth factor (EGF)-TM7 receptor, is not restricted to hematopoetic and carcinoma cells but is also found on smooth muscle cells (SMC). We have examined its location and biochemical structure in various normal and tumorigenic SMC-containing tissues. SMC of the urinary bladder, lung bronchi and bronchioles, myometrium, and gastrointestinal tract were immunohistologically stained by using monoclonal antibodies (mabs) to the CD97 stalk region (CD97(stalk)). Mabs directed against an N-glycosylation-dependent epitope within the EGF-domains (CD97(EGF)) did not bind to normal SMC. Vascular SMC, which was also CD97(EGF)-negative, showed further CD97 heterogeneity. Only a few, if any, SMC from the aorta or elastic arteries of the systemic circulation were positive for CD97 mRNA and therefore also for CD97(stalk). CD97(stalk)-positive SMC were slightly more numerous in muscular and peripheral arteries. In contrast, most venous SMC expressed CD97(stalk). A comparison with other SMC molecules revealed a similar but not identical staining pattern for CD97(stalk) and desmin. Further CD97 heterogeneity was observed during SMC transformation. All leiomyomas (n=5) and nine out of 21 leiomyosarcomas were positive for both CD97(stalk) and CD97(EGF). As expected, CD97(EGF)-positive SMC tumors expressed partly N-glycosylated CD97. Seven out of 21 leiomyosarcomas were completely devoid of CD97. Thus, CD97 showed variable expression in vascular and biochemical modification in tumorigenic SMC, suggesting that the function of the molecule is specific for the SMC subtype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-005-0103-2 | DOI Listing |
Molecules
December 2024
Laboratoire de Chimie de Coordination, CNRS, Toulouse-INP, Université de Toulouse, 31000 Toulouse, France.
In recent years, there has been growing interest in the development of greener alternatives to traditional reagents used in carbon-carbon coupling reactions, particularly in response to environmental concerns. The commonly used aryl halides, despite being highly reactive in the Suzuki-Miyaura coupling (SMC), pose significant environmental risks. As a result, research has shifted towards exploring the use of phenols, which are widely accessible and environmentally benign.
View Article and Find Full Text PDFCells
January 2025
Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.
View Article and Find Full Text PDFJ Clin Neurol
January 2025
Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Background And Purpose: This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD.
Methods: This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!