DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals.

Neuropsychopharmacology

Laboratory for Psychophysiology and Functional Imaging, Department of Psychiatry, University of Würzburg, Würzburg, Bavaria, Germany.

Published: September 2006

DTNBP1 (dysbindin) is one of the several putative schizophrenia genes supported by association, neuroanatomical, and cellular studies. These suggest an involvement of DTNBP1 in the prefrontal cortex and cognitive functions mediated by interaction with neurotransmitter systems, in particular glutamate. The influence of DTNBP1 gene variation on prefrontal brain function at the systemic neurophysiological level, though, has not been characterized. The NoGo-anteriorization (NGA) as an event-related potential (ERP) measure elicited during the continuous performance test (CPT) has been established as a valid neurophysiological parameter for prefrontal brain function in healthy individuals and patients with schizophrenias. In the present study, we therefore investigated the influence of eight dysbindin gene variants on the NGA as a marker of prefrontal brain function in 48 healthy individuals. Two DTNBP1 polymorphisms previously linked to schizophrenia (P1765 and P1320) were found associated with changes in the NGA. Post hoc analysis showing an influence of genetic variation at these loci on the Go centroid and frontal amplitudes suggest that this might be due to modification of the execution of motor processes by the prefrontal cortex. This is the first report on a role of DTNBP1 gene variation for prefrontal brain function at a systemic neurophysiological level in healthy humans. Future studies will have to address the relevance of this observation for patients with schizophrenias.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301003DOI Listing

Publication Analysis

Top Keywords

prefrontal brain
20
brain function
20
function healthy
12
healthy individuals
12
dtnbp1 dysbindin
8
dysbindin gene
8
gene variants
8
individuals dtnbp1
8
prefrontal cortex
8
dtnbp1 gene
8

Similar Publications

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!