The dopaminergic and glutamatergic systems interact to initiate and organize normal behavior, a communication that may be perturbed in many neuropsychiatric diseases, including schizophrenia. We show here that NMDA, by allosterically modifying NMDA receptors, can act as a scaffold to recruit laterally diffusing dopamine D1 receptors (D1R) to neuronal spines. Using organotypic culture from rat striatum transfected with D1R fused to a fluorescent protein, we show that the majority of dendritic D1R are in lateral diffusion and that their mobility is confined by interaction with NMDA receptors. Exposure to NMDA reduces the diffusion coefficient for D1R and causes an increase in the number of D1R-positive spines. Unexpectedly, the action of NMDA in potentiating D1R recruitment was independent of calcium flow via the NMDA receptor channel. Thus, a highly energy-efficient, diffusion-trap mechanism can account for intraneuronal interaction between the glutamatergic and dopaminergic systems and for regulation of the number of D1R-positive spines. This diffusion trap system represents a molecular mechanism for brain plasticity and offers a promising target for development of antipsychotic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334633PMC
http://dx.doi.org/10.1073/pnas.0505557103DOI Listing

Publication Analysis

Top Keywords

nmda receptor
8
dopamine receptors
8
nmda receptors
8
number d1r-positive
8
d1r-positive spines
8
nmda
7
d1r
5
allosteric changes
4
changes nmda
4
receptor trap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!