Xbves is a regulator of epithelial movement during early Xenopus laevis development.

Proc Natl Acad Sci U S A

Program in Developmental Biology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN 37232-6300, USA.

Published: January 2006

Bves/pop1a is a unique, highly conserved integral membrane protein expressed in embryonic epithelia and striated muscle. Although studies have proposed a role in epithelial morphogenesis, the function of Bves/pop1a in development is completely unknown. Here we show that Xenopus laevis Bves (Xbves) RNA and protein are expressed in epithelia of the early embryo. Transfection of Xbves into nonadherent mouse L cells confers cell/cell adhesion. Global inhibition of Xbves function by morpholino injection into two-cell embryos arrests development at gastrulation by deregulating the epithelial movements of epiboly and involution. Clonal inhibition of Xbves activity within the A1 blastomere and its derivatives completely randomizes movement of its progeny within otherwise normally differentiating embryos. These data demonstrate that Bves/pop1a proteins play a critical role in epithelial morphogenesis and, specifically, in the cell movements essential for epithelial rearrangements that occur during X. laevis development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334639PMC
http://dx.doi.org/10.1073/pnas.0506095103DOI Listing

Publication Analysis

Top Keywords

xenopus laevis
8
laevis development
8
protein expressed
8
role epithelial
8
epithelial morphogenesis
8
inhibition xbves
8
xbves
5
epithelial
5
xbves regulator
4
regulator epithelial
4

Similar Publications

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

The amphibian metamorphosis assay (AMA) is an in vivo screen to assess potential interactions of chemicals with the amphibian thyroid system. Tadpoles are exposed for 21-days, then assessed for development and growth after 7 days and at test termination. This paper presents data from studies performed to satisfy test orders from the US EPA's Endocrine Disruptor Screening Program.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!