Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several molecules and cellular pathways have been implicated in nociceptive signaling, but their precise molecular mechanisms have not been clearly defined. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase implicated in the development and disease of the mammalian nervous system. The precise role of this kinase in sensory pathways has not been well characterized. Here we report a molecular role for Cdk5 in nociception. We identified the expression of Cdk5 and its activator p35 in nociceptive neurons, which is modulated during a peripheral inflammatory response. Increased calpain activity in sensory neurons after inflammation resulted in the cleavage of p35 to p25, which forms a more stable complex with Cdk5 and, consequently, leads to elevation of Cdk5 activity. p35 knockout mice (p35(-/-)), which exhibit significantly decreased Cdk5 activity, showed delayed responses to painful thermal stimulation compared with WT controls. In contrast, mice overexpressing p35, which exhibit elevated levels of Cdk5 activity, were more sensitive to painful thermal stimuli than were controls. In conclusion, our data demonstrate a role for Cdk5/p35 activity in primary afferent nociceptive signaling, suggesting that Cdk5/p35 may be a target for the development of analgesic drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325969 | PMC |
http://dx.doi.org/10.1073/pnas.0510405103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!