Regulation of motor performance and striatal function by synaptic scaffolding proteins of the Homer1 family.

Proc Natl Acad Sci U S A

Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg 69120, Germany.

Published: January 2006

Intracellular calcium mobilization and signaling mechanisms triggered by activation of synaptic glutamate receptors in the striatum are important modulators of neurotransmission in striatal circuits. However, the expression and functions of scaffolding proteins anchoring glutamate receptors at striatal synapses have not been addressed so far. The long-form Homer1 proteins, Homer1b/c, assemble group I metabotropic glutamate receptors (mGluR1/5) in large macromolecular complexes with sources of calcium influx and release at synapses as well as with components of the NMDA receptor complex at the neuronal cell membrane. Homer1a, the short, activity-dependent splice variant of Homer1b/c, lacks the ability of linking mGluR1/5 to synaptic proteins and functions as an endogenous negative modulator of the mGluR1/5 inositol 1,4,5-trisphosphate receptor signaling complex. We have generated transgenic mice, which overexpress Homer1a in striatal medium spiny neurons either homogenously throughout the extrastriosomal matrix (Homer1a-matrix line) or predominantly in striosomal patches (Homer1a-striosome line). Homer1a-expressing mice demonstrated normal development of striatal structure and afferent-efferent connectivity. However, motor performance in behavioral tasks and striatal responses to the psychomotor stimulant amphetamine were significantly altered in the Homer1a-striosome line. Thus, glutamate receptor scaffolding proteins of the Homer1 family critically regulate the functions of striatal medium spiny neurons in complex motor tasks and its modulation by psychomotor stimulant drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325014PMC
http://dx.doi.org/10.1073/pnas.0505900103DOI Listing

Publication Analysis

Top Keywords

scaffolding proteins
12
glutamate receptors
12
motor performance
8
proteins homer1
8
homer1 family
8
striatal medium
8
medium spiny
8
spiny neurons
8
psychomotor stimulant
8
striatal
7

Similar Publications

Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects.

View Article and Find Full Text PDF

Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.

View Article and Find Full Text PDF

The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis.

Respir Res

January 2025

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.

Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).

View Article and Find Full Text PDF

Background: Broussonetia papyrifera, B. monoica, and B. kaempferi belong to the genus Broussonetia (Moraceae).

View Article and Find Full Text PDF

The stone loach Barbatula barbatula is a benthic fish species widely distributed throughout Europe, primarily inhabiting stony upper sections of stream networks. This study presents an updated genome assembly of B. barbatula, contributing to the species' available genomic resources for downstream applications such as conservation genetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!