Essential oil constituents were tested for their neurophysiological effects in Periplaneta americana and Blaberus discoidalis. Eugenol depressed spontaneous and stimulus-evoked impulses recorded extracellularly in the abdominal nerve cord, with an almost complete block of spikes at 2 x 10(-3) M. Geraniol and citral had similar depressive effects but increased spontaneous firing at lower doses (threshold 2.5 x 10(-4) M). Similar effects occurred in dorsal unpaired median (DUM) neurons, recorded intracellularly in the isolated terminal abdominal ganglion of P. americana. Spontaneous firing was progressively reduced by increasing concentrations of eugenol, whereas geraniol and citral produced biphasic effects (excitation at 10(-4) M, depression at 2 x 10(-3) M). All three oils decreased excitability of silent DUM neurons that were depolarised by applied current, but eugenol (at 10(-3) M) also changed the firing pattern from single spikes to bursts driven by plateau potentials. All oils reduced spike undershoot. Low doses of citral and geraniol (threshold ca. 10(-4) M) reversibly increased the frequency of spontaneous foregut contractions and abolished them at 2 x 10(-3) M (together with response to electrical stimulation). Eugenol reversibly reduced spontaneous activity at 10(-4) M and above. Eugenol has been reported to exert its insecticidal properties via a low-dose activation of octopamine receptors. In our studies, however, octopamine was found to have opposing effects to eugenol on DUM neurons and foregut activity (excitatory in both). Furthermore, eugenol did not affect the response to octopamine in DUM neurons. These results suggest that reported effects of eugenol were on a different sub-type of octopamine receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2005.11.010 | DOI Listing |
Pathol Res Pract
December 2024
Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
The protein gene product 9.5 (PGP9.5), also termed ubiquitin C-terminal hydrolase L1 (UCH-L1) is an important component of the ubiquitination/deubiquitination system and plays a role in axonal transport.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France. Electronic address:
Cell Rep
November 2024
Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Electronic address:
Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology.
View Article and Find Full Text PDFCell Tissue Res
November 2024
Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin.
View Article and Find Full Text PDFJ Neurochem
July 2024
Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, Orléans, France.
Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!