Nogo-related brain potentials may not be dependent on sensory modalities but reflect common neural activities specific to the inhibitory process. Recent studies reported that nogo potentials were elicited by not only visual and auditory but also somatosensory stimulation. However, the characteristics of this nogo potential evoked by somatosensory stimulation have been unclear because of the small number of reports. In the present study, therefore, to determine the characteristics of this potential, the effects of stimulus site and response hand were investigated. Electrical stimulation was delivered to the second and fifth digit of one hand, and the subjects had to respond to a go stimulus by pushing a button with the thumb contralateral to the stimulated side as quickly as possible. The amplitudes of the nogo-N140 component (N140 evoked by the nogo stimuli), which is very similar to the nogo-N2 components following visual and auditory stimulation, were unrelated to the stimulated digits, the second and fifth digit of the left and right hand. However, differences between go and nogo ERPs were significantly larger in the hemisphere contralateral to the response hand than the ipsilateral hemisphere. This result was inconsistent with visual and auditory go/nogo studies showing a right-hemisphere dominance or bilateral activities in nogo trials. Therefore, nogo-N140 should be considered to reflect the inhibitory process especially in the hemisphere contralateral to the response hand and the sensory modality dependency of nogo potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2005.12.041 | DOI Listing |
BMC Med Educ
January 2025
Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080, Mexico, México.
Background: The field of health sciences is constantly evolving, presenting significant challenges to student learning performance. Therefore, it is crucial to identify the factors influencing students' learning style preferences, as these relate to how they acquire, understand, interpret, organize, and process information from their courses. In this study, we evaluated whether there is a relationship between students' learning style preferences and their learning gains.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France. Electronic address:
The ability to distinguish between individuals is crucial for social species and supports behaviors such as reproduction, hierarchy formation, and cooperation. In rodents, social discrimination relies on memory and the recognition of individual-specific cues, known as "individual signatures". While olfactory signals are central, other sensory cues - such as auditory, visual, and tactile inputs - also play a role.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, Huron University College at Western: London, 1349 Western Road, London, ON, N6G 1H3, Canada.
Previous studies have reported visual motion aftereffects (MAEs) following prolonged exposure to auditory stimuli depicting motion, such as ascending or descending musical scales. The role of attention in modulating these cross-modal MAEs, however, remains unclear. The present study manipulated the level of attention directed to musical scales depicting motion and assessed subsequent changes in MAE strength.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.
Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Cognitive Science, Institute for Convergence Science and Technology (ICST), Sharif University of Technology, Tehran, Iran.
The brain can remarkably adapt its decision-making process to suit the dynamic environment and diverse aims and demands. The brain's flexibility can be classified into three categories: flexibility in choosing solutions, decision policies, and actions. We employ two experiments to explore flexibility in decision policy: a visual object categorization task and an auditory object categorization task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!