Effect of ethanol on human osteosarcoma cell proliferation, differentiation and mineralization.

Toxicology

Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani, Chennai 600113, India.

Published: March 2006

The habitual consumption of even moderate quantities of alcoholic beverages is clearly associated with reduced bone mass, increased prevalence of skeletal fracture and also it is the major risk factor for the development of secondary osteoporosis. The present in vitro study was designed to determine the dose response effects of ethanol on osteoblast-like human osteosarcoma cells (SaOS-2) proliferation, differentiation, mineralization and cyto-toxicity. SaOS-2 cells were plated in 48 and 6 well culture plates and exposed to different concentrations of ethanol (1, 10, 100, 200 and 300 mM) for 24, 48 and 72 h. At the end of incubation, proliferation of cells was studied using crystal violet Bioassay. The cell lysate was utilized to determine ALP activity and conditioned media were used to measure LDH activity. Histochemical localization of ALP and mineralized nodules were studied from cells treated with ethanol (10 and 100 mM) for 21 days. At higher doses, there was a significant reduction in cell number, whereas at lower doses there were variable effects. In 24 h treatment, the higher doses showed a significant increase in ALP activity, whereas 48 and 72 h treatments showed an opposite trend. Ethanol treatment caused a dose- and time-dependent increase in LDH activity. Ethanol treatment altered the quality of mineralization at 10 mM dose whereas completely inhibited mineralization at 100 mM dose, despite the presence of serum. In conclusion, the toxic effect of ethanol is reflected on cell proliferation, differentiation and mineralization even at low doses and at extended treatment duration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2005.11.026DOI Listing

Publication Analysis

Top Keywords

proliferation differentiation
12
differentiation mineralization
12
human osteosarcoma
8
cell proliferation
8
ethanol 100
8
alp activity
8
ldh activity
8
higher doses
8
ethanol treatment
8
ethanol
7

Similar Publications

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

The hematopoietic tissue (HPT) and anterior proliferation center (APC) are the main hemocyte-producing organs of the freshwater crayfish, Pacifastacus leniusculus. To deepen our understanding of immune responses to various pathogens, it is essential to identify distinct hemocyte subpopulations with specific functions and to further explore how these cells are generated. Here we provide an in-depth histological study of the HPT and APC in order to localize cell types in different developmental stages, and to provide some information regarding the hemocyte differentiation in the crayfish.

View Article and Find Full Text PDF

A rapid chemical reprogramming system to generate human pluripotent stem cells.

Nat Chem Biol

January 2025

MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.

Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.

View Article and Find Full Text PDF

Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells.

Nat Chem Biol

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!