A convenient analytical method to quantify volatile organic compounds (VOCs) emitted from various building materials has not been addressed yet. This work presents a new and rapid automated method using SPME combined with GC/MS. Methyl benzoate - as a metabolic biomarker for mold growth-was used to indicate VOCs and to determine and assess mold growth on damp samples. Gypsum board and wall-board paper were used as examples of common indoor building materials. Optimized extraction conditions were carried out manually, using a GC/flame ionization detector. Moldy samples were analyzed using an automated SPME-GC/MS analysis under optimized conditions. The amount of methyl benzoate emitted from the studied samples ranged from 32 to 46 ppb, where the density of the fungal biomass was found to be 8 x 10(4) cells/mL. A relationship between the amount of fungal biomass and the emitted concentration of methyl benzoate was found and assessed based upon cultured mold samples taken from indoor building sites. The analytical method shows promise for the compound methyl benzoate, which can easily be identified at low detection limits (LOD = 3 ppb) and good linearity (>0.988), and its extraction and detection can be accomplished cleanly by current extraction techniques. Results suggest that this method with easy sample preparation can be used for quantitation and, of importance, minimal matrix effects are observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.200500010 | DOI Listing |
Dalton Trans
December 2024
Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
The aggregation state of polyhedral oligomeric silsesquioxane (POSS) within a polymer matrix plays a crucial role. Molecular interactions are key driving forces for aggregation, and one of the key physical parameters is the dipole moment (DPM). Quantum calculations such as density functional theory (DFT) calculations can be used to estimate the DPM.
View Article and Find Full Text PDFBiotech Histochem
December 2024
Department of Oral & Maxillofacial Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, India.
Lactic acid bacteria metabolism affects the composition of volatile organic compounds (VOCs) in alfalfa silage, which results in differences of odor and quality. The aim of this study was to reveal the effects of commercial Lactobacillus plantarum (CL), screened Lactobacillus plantarum (LP), and screened Pediococcus pentosaceus (PP) on quality, microbial community, and VOCs of alfalfa silage based on volatile metabolomics and metagenomics. The results showed that the LP and PP groups had higher sensory and quality grades, and the dominant bacteria were Lactiplantibacillus plantarum and Pediococcus pentosaceus.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Global Forensic and Justice Center and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA 33199.
J Hazard Mater
December 2024
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Bensulfuron-methyl (BSM), a widely used herbicide, can persist in soil and damag sensitive crops. Microbial degradation, supplemented with exogenous additives, provides an effective strategy to enhance BSM breakdown. Hansschlegelia zhihuaiae S113 has been shown to efficiently degrade this sulfonylurea herbicide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!