AI Article Synopsis

  • Human neural stem/progenitor cells (NSPCs) are being studied for their potential in treating difficult nerve-related diseases through ex vivo expansion.
  • The study found that NSPCs thrive best in specific doses of growth factors like EGF, FGF2, and LIF, but FGF2 degrades quickly in culture, while EGF remains stable longer.
  • Optimizing NSPC culture conditions involves balancing the degradation of growth factors and incorporating additional beneficial supplements, while being cautious of certain factors that can be harmful at higher concentrations.

Article Abstract

One of the newest and most promising methods for treating intractable neuronal diseases and injures is the transplantation of ex vivo-expanded human neural stem/progenitor cells (NSPCs). Human NSPCs are selectively expanded as free-floating neurospheres in serum-free culture medium containing fibroblast growth factor 2 (FGF2) and/or epidermal growth factor (EGF); however, the culture conditions still need to be optimized for performance and cost before the method is used clinically. Here, to improve the NSPC culture method for clinical use, we used an ATP assay to screen the effects of various reagents on human NSPC proliferation. Human NSPCs responded to EGF, FGF2, and leukemia inhibitory factor (LIF) in a dose-dependent manner, and the minimum concentrations eliciting maximum effects were 10 ng/ml EGF, 10 ng/ ml FGF2, and 5 ng/ml LIF. EGF and LIF were stable in culture medium without NSPCs, although FGF2 was degraded. In the presence of human NSPCs, however, FGF2 and LIF were both degraded very rapidly, to below the estimated minimum concentration on day 3, but EGF remained above the minimum concentration for 5 days. Adding supplemental doses of each growth factor during the incubation promoted human NSPC proliferation. Among other supplements, insulin and transferrin promoted human NSPC growth, but progesterone, putrescine, selenite, D-glucose, and lactate were not effective and were cytotoxic at higher concentrations. Supplementing with conditioned medium from human NSPCs significantly increased human NSPC proliferation, but using a high percentage of the medium had a negative effect. These findings suggest that human NSPC culture is regulated by a balance in the culture medium between decreasing growth factor levels and increasing positive or negative factors derived from the NSPCs. Thus, in designing culture conditions for human NSPCs, it is useful to take the individual properties of each factor into consideration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human nspcs
20
human nspc
20
growth factor
16
human
12
culture medium
12
nspc proliferation
12
human neural
8
neural stem/progenitor
8
nspcs
8
culture conditions
8

Similar Publications

Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex.

EMBO J

December 2024

Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan.

Accurate mitotic division of neural stem and progenitor cells (NSPCs) is crucial for the coordinated generation of progenitors and mature neurons, which determines cortical size and structure. While mutations in the kinesin-like motor protein KIF23 gene have been recently linked to microcephaly in humans, the underlying mechanisms remain elusive. Here, we explore the pivotal role of KIF23 in embryonic cortical development.

View Article and Find Full Text PDF
Article Synopsis
  • Transplantation of injury/ischemia-induced stem cells (iSCs) from post-stroke human brains has been shown to improve neurological functions in stroke-affected mice, although their effectiveness compared to mesenchymal stem cells (MSCs) remains uncertain.
  • In experiments, both h-iSCs and h-MSCs were transplanted into mice, with results indicating that while both types activated neural stem/progenitor cells (NSPCs), h-iSCs led to greater improvements in a variety of behavioral tasks.
  • Further analysis revealed that interactions between NSPCs and h-iSCs promoted the transdifferentiation toward functional neurons more effectively than interactions with h-MSCs, suggesting h-iSCs may
View Article and Find Full Text PDF

Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a deadly form of glioma notable for its significant intratumoral heterogeneity, which is believed to drive therapy resistance. GBM has been observed to mimic a neural stem cell hierarchy reminiscent of normal brain development. However, it is still unclear how cell-of-origin shapes intratumoral heterogeneity.

View Article and Find Full Text PDF

In vitro cytotoxicity assessment of ruxolitinib on oligodendrocyte precursor cell and neural stem/progenitor cell populations.

Neurotoxicology

December 2024

Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia. Electronic address:

JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: