The effects of dilept (N-caproyl-L-prolyl-L-tyrosine methyl ester) - a new peptidomimetic of neurotensine - on the level of monoamines and their main metabolites in four functionally important brain structures has been studied upon single and subchronic administration in intact rats and in those pretreated with the NMDA receptor blocker ketamine. Repeated administration of dilept favors the accumulation of DOPAC and accelerates the dopamine (DA) turnover in nucleus accumbens, as manifested by an increase in the DOPAC/DA ratio. The opposite effect (decrease in the DOPAC/DA ratio) was observed in the hypothalamus, where the subchronic treatment with dilept completely inhibited the activating action of ketamine on the DA turnover. The selective influence of dilept on the dopaminergic system activity in nucleus accumbens (but not in striatum), together with the previously obtained behavioral data, suggest that dilept is a new atypical neuroleptic producing no extrapyramidal side effects.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nucleus accumbens
12
dopamine turnover
8
turnover nucleus
8
dopac/da ratio
8
dilept
6
[the tripeptoid
4
tripeptoid neurotensin
4
neurotensin analog
4
analog dilept
4
dilept selectively
4

Similar Publications

A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.

View Article and Find Full Text PDF

Background: Endometriosis, a prevalent chronic gynecological condition, is frequently associated with infertility and pelvic pain. Despite numerous studies indicating a correlation between epigenetic regulation and endometriosis, its precise genetic etiology remains elusive. Methyltransferase-like 14 (METTL14), a crucial component of the N6-methyladenosine (mA) RNA methyltransferase complex and an RNA binding scaffold, is known to play a pivotal role in various human diseases.

View Article and Find Full Text PDF

Learning in dynamic environments requires animals to not only associate cues with outcomes but also to determine cue salience, which modulates how quickly related associations are updated. While dopamine (DA) in the nucleus accumbens core (NAcc) has been implicated in learning associations, the mechanisms of salience are less understood. Here, we tested the hypothesis that acetylcholine (ACh) in the NAcc encodes cue salience.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a Non-Human primate model of Cytokine-Induced depression.

Brain Behav Immun

January 2025

Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA. Electronic address:

Inflammatory stimuli administered to humans and laboratory animals affect mesolimbic and nigrostriatal dopaminergic pathways in association with impaired motivation and motor activity. Alterations in dopaminergic corticostriatal reward and motor circuits have also been observed in depressed patients with increased peripheral inflammatory markers. The effects of peripheral inflammation on dopaminergic pathways and associated neurobiologic mechanisms and consequences have been difficult to measure in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!