Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alternaria brassicicola causes black spot disease of cultivated Brassicas and has been used consistently as a necrotrophic fungal pathogen for studies with Arabidopsis. In A. brassicicola, mutant generation has been the most rate-limiting step for the functional analysis of individual genes due to low efficiency of both transformation and targeted integration. To improve the targeted gene disruption efficiency as well as to expedite gene disruption construct production, we used a short linear construct with minimal elements, an antibiotic resistance selectable marker gene, and a 250- to 600-bp-long partial target gene. The linear minimal element (LME) constructs consistently produced stable transformants for diverse categories of genes. Typically, 100% of the transformants were targeted gene disruption mutants when using the LME constructs, compared with inconsistent transformation and usually less than 10% targeted gene disruption with circular plasmid disruption constructs. Each mutant displayed a unique molecular signature thought to originate from endogenous exonuclease activities in fungal cells. Our data suggests that a DNA double-stranded break repair mechanism (DSBR) functions to increase targeting efficiency. This method is advantageous for high throughput gene disruption, overexpression, and reporter gene introduction within target genes, especially for asexual filamentous fungi where genetic approaches are unfavorable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-19-0007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!