The goal of this study was to identify genes consistently differentially expressed in multiple pairs of isogenic cisplatin (DDP)-sensitive and resistant human ovarian carcinoma cell lines using microarray-based expression profiling. Expression profiling was carried out on six pairs of ovarian carcinoma cells lines growing under identical conditions; each cell expression profile was independently replicated six times. No genes were differentially expressed in all six pairs of cells or even in even in any five of the six pairs. Eighteen genes and 1 EST were upregulated, and four genes and 1 EST were downregulated, in at least four cell pairs. Of these, only metallothionein 2A has previously been implicated in DDP resistance. Among the genes identified on the basis of six replicates, an average of 24.8% would have been missed if only five replicates had been performed, and 38.3% would have been missed with only four replicates. The genes did not identify a dominant biochemical pathway or ontology category as being linked to DDP resistance; however, hierarchical clustering provided evidence for two classes DDP-resistant phenotypes within which there are additional cell pair-specific alterations. Many of the genes identified in this study play important roles in cell surface interactions and trafficking pathways not previously linked to DDP resistance. The genes discovered by this extensively replicated analysis are candidates for prediction of DDP responsiveness in ovarian cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-005-0171-8DOI Listing

Publication Analysis

Top Keywords

ovarian carcinoma
12
ddp resistance
12
human ovarian
8
carcinoma cells
8
genes
8
differentially expressed
8
expression profiling
8
genes est
8
resistance genes
8
genes identified
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!