In situ hybridizations of single-copy GC-rich, gene-rich and GC-poor, gene-poor chicken DNA allowed us to localize the gene-rich and the gene-poor chromosomal regions in interphase nuclei of cold-blooded vertebrates. Our results showed that the gene-rich regions from amphibians (Rana esculenta) and reptiles (Podarcis sicula) occupy the more internal part of the nuclei, whereas the gene-poor regions occupy the periphery. This finding is similar to that previously reported in warm-blooded vertebrates, in spite of the lower GC levels of the gene-rich regions of cold-blooded vertebrates. This suggests that this similarity extends to chromatin structure, which is more open in the gene-rich regions of both mammals and birds and more compact in the gene-poor regions. In turn, this may explain why the compositional transition undergone by the genome at the emergence of homeothermy did not involve the entire ancestral genome but only a small part of it, and why it involved both coding and noncoding sequences. Indeed, the GC level increased only in that part of the genome that needed a thermodynamic stabilization, namely in the more open gene-rich chromatin of the nuclear interior, whereas the gene-poor chromatin of the periphery was stabilized by its own compact structure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00412-005-0039-zDOI Listing

Publication Analysis

Top Keywords

cold-blooded vertebrates
12
gene-rich regions
12
gene-rich gene-poor
8
gene-poor chromosomal
8
chromosomal regions
8
interphase nuclei
8
nuclei cold-blooded
8
gene-poor regions
8
open gene-rich
8
gene-rich
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!