Signaling through the murine T cell receptor induces IL-17 production in the absence of costimulation, IL-23 or dendritic cells.

Mol Cells

Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.

Published: December 2005

IL-17 (IL-17A or CTLA-8) is the founding member of a novel family of inflammatory cytokines, and emerging evidence indicates that it plays a central role in inflammation and autoimmunity. IL-17 is made primarily, if not exclusively by T cells, but relatively little is known about how its expression is regulated. In the present study, we examined the requirements and mechanisms for IL-17 expression in primary mouse lymphocytes. Like many cytokines, IL-17 is induced rapidly in primary T cells after stimulation of the T cell receptor (TCR) through CD3 crossinking. Surprisingly, however, the pattern of regulation of IL-17 is different in mice than in humans, because "costimulation" of T cells through CD28 only mildly enhanced IL-17 expression, whereas levels of IL-2 were dramatically enhanced. Similarly, several other costimulatory molecules such as ICOS, 4-1BB and CD40L exerted only very weak enhancing effects on IL-17 production. In agreement with other reports, IL-23 enhanced CD3-induced IL-17 expression. However, IL-17 production can occur autonomously in T cells, as neither dendritic cells nor IL-23 were necessary for promoting short-term production of IL-17. Finally, to begin to characterize the TCR-mediated signaling pathway(s) required for IL-17 production, we showed that IL-17 expression is sensitive to cyclosporin-A and MAPK inhibitors, suggesting the involvement of the calcineurin/NFAT and MAPK signaling pathways.

Download full-text PDF

Source

Publication Analysis

Top Keywords

il-17 production
16
il-17 expression
16
il-17
13
cell receptor
8
dendritic cells
8
production il-17
8
signaling pathways
8
cells
6
production
5
expression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!