Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Within the broad variety of compounds generated via oxidative reactions in low density lipoproteins (LDL) and subsequently found in the atherosclerotic plaque, are aldehydes still esterified to the parent lipid and termed core-aldehydes. The most represented cholesterol core-aldehyde in LDL is 9-oxononanoyl cholesterol (9-ONC), an oxidation product of cholesteryl linoleate. Here we report that 9-ONC, at concentration actually detectable in biological material, significantly up-regulates the expression and the synthesis of the pro-fibrogenic cytokine transforming growth factor beta1 (TGFbeta1) by cultured macrophages. As previously demonstrated for other lipid oxidation products present in LDL, namely a biologically representative mixture of oxysterols and the unesterified aldehyde 4-hydroxynonenal, these effects on TGFbeta1 by 9-ONC further points to LDL lipid oxidation as a powerful source of pro-fibrogenic stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.5520240125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!