Dalton Trans
Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA.
Published: January 2006
Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs. NHE for MnTTEG-2-PyP5+ and E1/2 = + 412 mV vs. NHE for MnTDTEG-2-ImP5+. As expected, from established E1/2 vs. log kcat(O2 *-) structure-activity relationships for metalloporphyrins (Batinic-Haberle et al., Inorg. Chem., 1999, 38, 4011), both compounds exhibit higher SOD-like activity than any meso-substituted Mn(III) porphyrins-based SOD mimic thus far, log kcat = 8.11 (MnTTEG-2-PyP5+) and log kcat = 8.55 (MnTDTEG-2-ImP5+), the former being only a few-fold less potent in disproportionating O2*- than the SOD enzyme itself. The new porphyrins are stable to both acid and EDTA, and non toxic to E. coli. Despite elongated substituents, which could potentially lower their ability to cross the cell wall, MnTTEG-2-PyP5+ and MnTDTEG-2-ImP5+ exhibit similar protection of SOD-deficient E. coli as their much smaller ethyl analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+, respectively. Consequently, with anticipated increased blood-circulating half-life, these new Mn(III) porphyrins may be more effective in ameliorating oxidative stress injuries than ethyl analogues that have been already successfully explored in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b513761f | DOI Listing |
Inorg Chem
December 2024
Sun Yat-Sen University, Guangzhou 510006, China.
As a contracted porphyrin analogue, corrole shows a more acidic and trinegative/triprotic nature compared with porphyrin in the field of coordination chemistry. However, the direct introduction of corrole into a metal-organic framework is quite difficult due to its lower symmetry. Herein, we report the one-pot synthesis of a series of corrole and porphyrin-based multivariate porphyrinic metal-organic frameworks M(TCPC)@M-PCN-222 (M = Cu, Mn, FeCl; TCPC = 5,10,15-tris(4-carboxyphenyl) corrole; M = Co, Cu, Ni, FeCl) and applied them to the insertion of a Si-H bond with α-diazoacetates.
View Article and Find Full Text PDFInorg Chem
December 2024
LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
Binuclear catalytic sites attained in a controlled way with complementary and cooperative metal ion centers are highly relevant in the development of new or enhanced catalytic processes. Herein, binuclear sites carrying Fe(III), Cu(II), or Mn(III) metal ions with a polarized structure have been prepared using the ionic self-assembly of oppositely charged metalloporphyrins. Binary porphyrin structures (BIPOS) have been prepared based on metalloporphyrin cations carrying pyridinium or methylpyridinium groups in conjugation with metalloporphyrin anions carrying sulfonatophenyl groups.
View Article and Find Full Text PDFACS Omega
July 2024
Centro de Ciências Exatas e Tecnológicas-Universidade Federal do Recôncavo da Bahia, 44380-000. Cruz das Almas, Bahia, Brazil.
A heterogenized Mn(III) porphyrin-based catalyst was prepared for dye degradation. The new Mn(III) complex of 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin was immobilized, via covalent bond, in chloropropyl silica gel, generating the material (Sil-Cl@MnP) with a loading of 23 μmol manganese porphyrin (MnP) per gram of Sil-Cl. This material was used as a catalyst in degradation reactions of model dyes, a cationic dye [methylene blue (MB)] and an anionic dye (reactive red 120, RR120), using PhI(OAc) and HO as oxidants.
View Article and Find Full Text PDFFree Radic Res
December 2023
Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy.
View Article and Find Full Text PDFJ Am Chem Soc
November 2023
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Synthetic porous materials continue to garner attention as platforms for solid-state chemistry and as designer heterogeneous catalysts. Applications in photochemistry and photocatalysis, however, are plagued by poor light harvesting efficiency due to light scattering resulting from sample microcrystallinity and poor optical penetration that arises from inner filter effects. Here we demonstrate the layer-by-layer growth of optically transparent, photochemically active thin films of porous salts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.