In this pilot study, we used an unsupervised learning algorithm for self-organization and pattern matching to create feature maps that can be applied to morphological problems. We designed a network to analyze 83 first and/or second upper and lower molar sets representing 13 anthropoid primate species, based on three-dimensional measures obtained from laser-digitized, virtual specimens. As shown in a comparison with a principal-component analysis of the virtual specimens, the artificial neural network approach provided more biologically meaningful information than the conventional multivariate analysis approach. The methodology discovered partitions and hierarchical clusters consistent with anthropoid systematics, from the species (or subspecies) level to the highest categories, by sorting and allocating upper and lower molar teeth. As one might expect, measures of upper molars were richer in phenetic information than those of lower molars, even among the anatomically diverse platyrrhines. We also show that reducing taxonomic noise (i.e. biological variation) by limiting the analysis to a monophyletic subset improves discrimination.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000089530DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
pilot study
8
upper lower
8
lower molar
8
virtual specimens
8
neural networks
4
networks three-dimensional
4
three-dimensional digital
4
digital morphology
4
morphology pilot
4

Similar Publications

This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.

View Article and Find Full Text PDF

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.

View Article and Find Full Text PDF

Protocol to infer off-target effects of drugs on cellular signaling using interactome-based deep learning.

STAR Protoc

January 2025

Department of Cell and Molecular Biology, SciLifeLab, Karolinska Institutet, 171 77 Stockholm, Sweden. Electronic address:

Drugs that target specific proteins often have off-target effects. We present a protocol using artificial neural networks to model cellular transcriptional responses to drugs, aiming to understand their mechanisms of action. We detail steps for predicting transcriptional activities, inferring drug-target interactions, and explaining the off-target mechanism of action.

View Article and Find Full Text PDF

Artificial intelligence (AI) scribe applications in the healthcare community are in the early adoption phase and offer unprecedented efficiency for medical documentation. They typically use an application programming interface with a large language model (LLM), for example, generative pretrained transformer 4. They use automatic speech recognition on the physician-patient interaction, generating a full medical note for the encounter, together with a draft follow-up e-mail for the patient and, often, recommendations, all within seconds or minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!