Air pollutants emissions from waste treatment and disposal facilities.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Department of Environmental Technology Management, College for Women, Kuwait University, Kuwait.

Published: April 2006

This study examined the atmospheric pollution created by some waste treatment and disposal facilities in the State of Kuwait. Air monitoring was conducted in a municipal wastewater treatment plant, an industrial wastewater treatment plant established in a petroleum refinery, and at a landfill site used for disposal of solid wastes. Such plants were selected as models for waste treatment and disposal facilities in the Arabian Gulf region and elsewhere. Air measurements were made over a period of 6 months and included levels of gaseous emissions as well as concentrations of volatile organic compounds (VOCs). Samples of gas and bioaerosols were collected from ambient air surrounding the treatment facilities. The results obtained from this study have indicated the presence of VOCs and other gaseous pollutants such as methane, ammonia, and hydrogen sulphide in air surrounding the waste treatment and disposal facilities. In some cases the levels exceeded the concentration limits specified by the air quality standards. Offensive odors were also detected. The study revealed that adverse environmental impact of air pollutants is a major concern in the industrial more than in the municipal waste treatment facilities but sitting of municipal waste treatment and disposal facilities nearby the urban areas poses a threat to the public health.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934520500298895DOI Listing

Publication Analysis

Top Keywords

waste treatment
24
treatment disposal
20
disposal facilities
20
treatment
9
air pollutants
8
facilities study
8
wastewater treatment
8
treatment plant
8
air surrounding
8
treatment facilities
8

Similar Publications

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

Water Res X

May 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.

View Article and Find Full Text PDF

Geopolymerization is a soil improvement technique widely used for waste management in recent years. This study explores the potential of geopolymerization for roadbed improvement using waste materials. Recycled glass powder (RGP) and calcium carbide residue (CCR) were investigated as precursors and alkaline activators, respectively, to enhance the properties of silty sand soil.

View Article and Find Full Text PDF

Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!