The combination of aspirin, heparin, and fibrinolytics was established in the late 1980s and early 1990s as the foundation for pharmacologic reperfusion therapy for ST-elevation myocardial infarction (STEMI). Since that time, many attempts have been made to improve on this regimen with limited success. In the late 1990s, primary percutaneous coronary intervention emerged as an invasive approach for reperfusion that offered superior outcomes to fibrinolytic therapy. However, timely access to experienced cardiac catheterization laboratories remains problematic for the majority of patients with STEMI. Meanwhile, recent advances in adjunctive antiplatelet and anticoagulation therapies have improved outcomes in patients undergoing pharmacologic reperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11936-006-0021-y | DOI Listing |
J Mol Med (Berl)
January 2025
Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.
View Article and Find Full Text PDFRev Int Androl
December 2024
Department of Sports Science, College of Education, Zhejiang University, 310058 Hangzhou, Zhejiang, China.
Background: Testicular torsion-detorsion damage is a common ischemia-reperfusion injury brought on by an excess of reactive oxygen species. Reactive oxygen species may affect cellular differentiation by regulating gene expression. The gene expression in the testis is essential for spermatogenesis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran.
Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!