The aim of the study was to investigate the histological characteristics and steroid concentrations in follicular fluid of different populations of follicles at different stages of development, during pregnancy and the oestrous cycle in cows. Follicles from ovaries collected at a slaughterhouse were allocated into three size categories (small, 2-5.9 mm; medium, 6-13.9 mm; and large, 14-20 mm) in pregnant and non-pregnant cows. Slices were stained with HE and PAS for histological analysis. Follicular fluid was pooled according to size and pregnancy status and estradiol, testosterone and progesterone concentrations in follicular fluid were determined by RIA. Characteristics of healthy follicles did not differ, regardless of follicle size or pregnancy status. Total histological atresia was significantly higher in pregnant cows than in non-pregnant cows (p < 0.05). Estradiol increased and testosterone decreased significantly, while follicles increased in size, in both non-pregnant and pregnant cows (p < 0.05). Nonpregnant cows had the highest estradiol values in follicles of all sizes. Medium and large follicles from pregnant cows showed the lowest testosterone concentration (p < 0.05). Progesterone levels increased with follicle size only in non-pregnant animals. In large follicles, progesterone concentration was significantly higher in non-pregnant cows than in pregnant cows (p < 0.05). Considering steroid concentration and histological findings, most large follicles might be atretic during pregnancy in cattle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11259-006-3100-3DOI Listing

Publication Analysis

Top Keywords

pregnant cows
16
follicular fluid
12
non-pregnant cows
12
cows 005
12
large follicles
12
cows
10
follicles
9
histological characteristics
8
characteristics steroid
8
steroid concentration
8

Similar Publications

Pregnancy failure in the first trimester of cows significantly impacts the efficiency of the dairy industry. As a type I interferon exclusively to ruminants, IFN-τ plays a key role in maternal recognition and immune tolerance of fetuses. Macrophages are the most common immune cells within the ruminant endometrium.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

As pregnancy can adversely affect the immune response of vaccination against foot and mouth disease virus (FMDV) due to physiological immunosuppressive milieu, we tested the effect of FMDV vaccination during mid-gestation on the antibody response. Pregnant and non-pregnant cows of crossbred and indigenous breed (n = 28/group) were vaccinated with inactivated FMD vaccine covering O, A, and Asia1 serotypes and the sera were harvested at weekly interval till day 42 post-vaccination. Virus neutralization test (VNT) was done and the analysis of log VN antibody titer by mixed model ANOVA indicated that pregnancy did not significantly affect the log VN titer for FMDV serotype O and Asia1.

View Article and Find Full Text PDF

Our aim was to determine the effects of P intake on P balance, serum parathyroid hormone (PTH) levels and bone resorption during the final 4 weeks prepartum and the first 8 weeks of lactation. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged according to a 2 × 2 factorial design. The experimental diets contained 3.

View Article and Find Full Text PDF

Investigating the reassortment potential and pathogenicity of the S segment in Akabane virus using a reverse genetics system.

BMC Vet Res

January 2025

Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.

Background: Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!