Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells.

Eukaryot Cell

Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.

Published: January 2006

Candida albicans ECM33 encodes a glycosylphosphatidylinositol-linked cell wall protein that is important for cell wall integrity. It is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis. To identify potential mechanisms through which Ecm33p contributes to virulence, we investigated the interactions of C. albicans ecm33Delta mutants with endothelial cells and the FaDu oral epithelial cell line in vitro. The growth rate of blastospores of strains containing either one or no intact copies of ECM33 was 50% slower than that of strains containing two intact copies of ECM33. However, all strains germinated at the same rate, forming similar-length hyphae on endothelial cells and oral epithelial cells. Strains containing either one or no intact copies of ECM33 had modestly reduced adherence to both types of host cells, and a markedly reduced capacity to invade and damage these cells. Saccharomyces cerevisiae expressing C. albicans ECM33 did not adhere to or invade epithelial cells, suggesting that Ecm33p by itself does not act as an adhesin or invasin. Examination of ecm33Delta mutants by transmission electron microscopy revealed that the cell wall of these strains had an abnormally electron-dense outer mannoprotein layer, which may represent a compensatory response to reduced cell wall integrity. The hyphae of these mutants also had aberrant surface localization of the adhesin Als1p. Collectively, these results suggest that Ecm33p is required for normal cell wall architecture as well as normal function and expression of cell surface proteins in C. albicans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360258PMC
http://dx.doi.org/10.1128/EC.5.1.140-147.2006DOI Listing

Publication Analysis

Top Keywords

cell wall
24
strains intact
12
intact copies
12
copies ecm33
12
candida albicans
8
cell
8
normal cell
8
wall architecture
8
host cells
8
albicans ecm33
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Seasonal Pattern of Endo-β-Mannanase Activity During Germination of , Exhibiting Morphophysiological Dormancy.

Plants (Basel)

January 2025

Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.

Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!