Adult neurogenesis in the dentate gyrus may contribute to hippocampus-dependent functions, yet little is known about when and how newborn neurons are functional because of limited information about the time course of their connectivity. By using retrovirus-mediated gene transduction, we followed the dendritic and axonal growth of adult-born neurons in the mouse dentate gyrus and identified distinct morphological stages that may indicate different levels of connectivity. Axonal projections of newborn neurons reach the CA3 area 10-11 d after viral infection, 5-6 d before the first spines are formed. Quantitative analyses show that the peak of spine growth occurs during the first 3-4 weeks, but further structural modifications of newborn neurons take place for months. Moreover, the morphological maturation is differentially affected by age and experience, as shown by comparisons between adult and postnatal brains and between housing conditions. Our study reveals the key morphological transitions of newborn granule neurons during their course of maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674324PMC
http://dx.doi.org/10.1523/JNEUROSCI.3648-05.2006DOI Listing

Publication Analysis

Top Keywords

newborn neurons
12
distinct morphological
8
morphological stages
8
dentate gyrus
8
neurons
5
stages dentate
4
dentate granule
4
granule neuron
4
neuron maturation
4
maturation adult
4

Similar Publications

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.

Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).

View Article and Find Full Text PDF

Extraventricular neurocytoma (EVN) is a rare neuronal tumor with a marked tendency towards ganglionic or glial differentiation. Although EVN commonly occurs in young adults, congenital cases are extremely rare, and standardized therapeutic strategies remain undetermined. The presence of atypical features such as increased mitotic activity on histological analysis is correlated with a higher rate of recurrence and poor prognosis.

View Article and Find Full Text PDF

Neuromuscular disorders (NMD) with neonatal or early infantile onset are usually severe and differ in symptoms, complications, and treatment options. The establishment of a diagnosis relies on the combination of clinical examination, morphological analyses of muscle biopsies, and genetic investigations. Here, we re-evaluated and classified a unique collection of 535 muscle biopsies from NMD infants aged 0-6 months examined over a period of 52 years.

View Article and Find Full Text PDF

Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology.

Commun Med (Lond)

December 2024

Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Background: Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown.

Methods: We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!