Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion.

Cell Metab

Medical Research Council, Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, United Kingdom.

Published: January 2006

AI Article Synopsis

  • The C57BL/6J mouse model exhibits glucose intolerance and reduced insulin secretion, with Nnt identified as a key gene involved in this condition.
  • siRNA knockdown of Nnt in MIN6 cells resulted in significantly decreased insulin secretion and impaired calcium responses to glucose.
  • Mutant mice with point mutations in Nnt displayed glucose intolerance and reduced insulin secretion, along with disruptions in mitochondrial metabolism, suggesting a link between Nnt dysfunction and impaired insulin release.

Article Abstract

The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. QTL mapping identified Nicotinamide Nucleotide Transhydrogenase (Nnt), a nuclear-encoded mitochondrial protein thought to be involved in free radical detoxification, as a candidate gene. To investigate its functional role, we used siRNA to knock down Nnt in insulin-secreting MIN6 cells. This produced a dramatic reduction in insulin secretion and the rise in [Ca2+]i evoked by glucose, but not tolbutamide. We identified two ENU-induced point mutations in Nnt (N68K, G745D). Nnt mutant mice were glucose intolerant and secreted less insulin during a glucose tolerance test. Isolated islets showed impaired insulin secretion in response to glucose, but not to tolbutamide, and glucose failed to enhance ATP levels. Glucose utilization and production of reactive oxygen species were increased in Nnt beta cells. We hypothesize that Nnt mutations/deletion uncouple beta cell mitochondrial metabolism leading to less ATP production, enhanced KATP channel activity, and consequently impaired insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2005.10.008DOI Listing

Publication Analysis

Top Keywords

insulin secretion
20
nicotinamide nucleotide
8
nucleotide transhydrogenase
8
glucose tolbutamide
8
impaired insulin
8
glucose
7
insulin
6
nnt
6
secretion
5
transhydrogenase key
4

Similar Publications

Debate: Lipid-lowering Therapies and Diabetes Development.

Curr Atheroscler Rep

January 2025

Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße, 30 52074, Aachen, Germany.

Purpose Of Review: This review explores the relationship between lipid-lowering therapies, particularly statins, and the risk of new-onset diabetes (NOD). It examines the underlying mechanisms and evaluates whether other lipid-lowering agents present similar risks.

Recent Findings: Recent meta-analyses further underscore a dose-dependent increase in NOD risk with statin therapy, particularly with high-intensity statins.

View Article and Find Full Text PDF

Leptin Receptor Deficiency-Associated Diabetes Disrupts Lacrimal Gland Circadian Rhythms and Contributes to Dry Eye Syndrome.

Invest Ophthalmol Vis Sci

January 2025

Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China.

Purpose: This study investigated the impact of hyperglycemia in type 2 diabetes mellitus (T2DM) on the circadian rhythms and function of lacrimal glands (LGs) in contributing to dry eye syndrome. We assessed the effects of hyperglycemia on circadian gene expression, immune cell recruitment, neural activity, and metabolic pathways, and evaluated the effectiveness of insulin in restoring normal LG function.

Methods: Using a T2DM mouse model (db/db mice), circadian transcriptomic changes in LGs were analyzed through RNA sequencing over a 24-hour period.

View Article and Find Full Text PDF

Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease.

Alzheimers Res Ther

January 2025

Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.

We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common disease associated with cognitive dysfunction, which is closely associated with type 2 diabetes mellitus (T2DM) in clinical manifestations, pathological changes and prevention. Inhibition of dipeptidyl peptidase 4 (DPP-4) can lower blood glucose levels by stimulating insulin secretion. Besides, it can affect cognitive function through the neuroprotective effect of DPP-4 substrates, such as glucose-dependent insulin peptide and glucagon-like peptide-1, the proteolytic effect on amyloid-β and the protective effect on neuronal structure.

View Article and Find Full Text PDF

Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes.

Nutrients

December 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Lokman Hekim University, 06510 Çankaya, Ankara, Turkey.

Background/objectives: In this study, the potential effects are evaluated of epigallocatechin gallate (EGCG) on the prognosis of diabetes and insulin resistance.

Methods: In an experiment, 35 male Wistar albino rats were used and in the streptozotocin (STZ)-induced diabetic rats, the effects were examined of different doses (50 mg/kg, 100 mg/kg, 200 mg/kg) of EGCG on metabolic parameters associated with diabetes and insulin resistance.

Results: The findings show favorable effects of EGCG on fasting blood glucose levels, insulin secretion, insulin resistance, and beta cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!