The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite.

Biomacromolecules

Biomaterials & Tissue Engineering Centre (BTEC), Academic Division of Surgical and Interventional Sciences, University College London, Rowland Hill, Hampstead, London NW3 2PF, U.K.

Published: January 2006

We have developed a nanocomposite using a silica nanocomposite polyhedral oligomeric silsesquioxane (POSS) and poly(carbonate-urea)urethane (PCU) for potential use in cardiovascular bypass grafts and the microvascular component of artificial capillary beds. In this study, we sought to compare its antithrombogenicity to that of conventional polymers used in vascular bypass grafts so as to improve upon current patency rates, particularly in the microvascular setting. Using atomic force microscopy (AFM) and transmission electron microscopy (TEM), surface topography and composition were studied, respectively. The ability of the nanocomposite surface to repel both proteins and platelets in vitro was assessed using thromboelastography (TEG), fibrinogen ELISA assays, antifactor Xa assays, scanning electron microscopy (SEM), and platelet adsorption tests. TEG analysis showed a significant decrease in clot strength (one-way ANOVA, p < 0.001) and increase in clot lysis (one-way ANOVA, p < 0.0001) on the nanocomposite when compared to both poly(tetrafluoroethylene) (PTFE) and PCU. ELISA assays indicate lower adsorption of fibrinogen to the nanocomposite compared to PTFE (one-way ANOVA, p < 0.01). Interestingly, increasing the concentration of POSS nanocages within these polymers was shown to proportionately inhibit factor X activity. Platelet adsorption at 120 min was also lower compared to PTFE and PCU (two-way ANOVA, p < 0.05). SEM images showed a "speckled" morphologic pattern with Cooper grades I platelet adsorption morphology on the nanocomposite compared to PTFE with grade IV morphology. On the basis of these results, we concluded that POSS nanocomposites possess greater thromboresistance than PTFE and PCU, making it an ideal material for the construction of both bypass grafts and microvessels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050590zDOI Listing

Publication Analysis

Top Keywords

bypass grafts
12
platelet adsorption
12
one-way anova
12
nanocomposite compared
12
ptfe pcu
12
compared ptfe
12
polyhedral oligomeric
8
oligomeric silsesquioxane
8
silsesquioxane poss
8
electron microscopy
8

Similar Publications

1-year patency of a novel biorestorative polymeric coronary artery bypass conduit.

Interdiscip Cardiovasc Thorac Surg

January 2025

Cardiac Surgery Department, Sanatorio Italiano, Asunción, Paraguay.

Coronary artery bypass graft surgery (CABG) remains the gold standard in the treatment of complex coronary artery disease (CAD). Saphenous vein grafts (SVG) are commonly used for the non-left anterior descending artery (LAD). However, SVG failure rates in CABG surgery have been reported to be as high as 30% at 1 year and ∼50% at 10 years.

View Article and Find Full Text PDF

Heart failure (HF) remains a significant public health issue, with heart transplantation (HT) being the gold standard treatment for end-stage HF. The increasing use of mechanical circulatory support, particularly left ventricular assist devices (LVADs), as a bridge to transplant (BTT), presents new perspectives for increasingly complex clinical scenarios. This study aimed to compare long-term clinical outcomes in patients in heart failure with reduced ejection fraction (HFrEF) receiving an LVAD as BTT to those undergoing direct-to-transplant (DTT) without mechanical support, focusing on survival and post-transplant complications.

View Article and Find Full Text PDF

Cardiac allograft vasculopathy (CAV) is a major prognosis-limiting factor in patients undergoing orthotopic heart transplantation (HT). Due to the diffuse involvement of the coronary tree, CAV lesions are often not amenable to percutaneous coronary intervention (PCI), leaving coronary artery bypass grafting (CABG) and retransplantation as primary revascularization options. : The latest guidelines from the International Society for Heart and Lung Transplantation (ISHLT) recognize CABG as a viable option but with a downgraded strength of recommendation.

View Article and Find Full Text PDF

Endovascular stent graft repair was developed to minimize the invasiveness of open surgery for thoracic and abdominal aortic diseases. This approach involves covering the diseased segment with a stented artificial graft. However, in thoracic endovascular aortic repair (TEVAR) for aortic arch diseases, special consideration is needed to preserve the aortic arch vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!