This paper reports on the thermodynamics of the interactions between surfactants (anionic, CITREM, SSL; nonionic, PGE; zwitterionic, phospholipids) and food proteins (sodium caseinate, legumin) depending on the chemical structure and molecular state (individual molecules, micelles) of the surfactants and the molecular parameters (conformation, molar mass, charge) of the proteins under changes of pH in the range from 7.2 to 5.0 and temperature from 293 to 323 K. The marked effect of the protein-surfactant interactions on the molecular parameters (the weight-average molar mass, the gyration and hydrodynamic radii) and the thermodynamic affinity of the proteins for an aqueous medium were determined by a combination of static and dynamic laser light scattering. Thermodynamically justified schematic sketches of the molecular mechanisms of the complex formation between like-charged proteins and surfactants have been proposed. In response to the complex formation between the proteins and the surfactants, the more stable and fine foams have been detected generally.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050455mDOI Listing

Publication Analysis

Top Keywords

molecular parameters
12
interactions molecular
8
food proteins
8
molar mass
8
complex formation
8
proteins surfactants
8
proteins
6
molecular
5
thermodynamic analysis
4
analysis impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!