The work deals with the problem of determination of automobile petrol of various octane numbers and petroleum contamination of some objects on the basis of analysis of photoluminescence spectra of automobile petrol samples. For this purpose steady state luminescence properties of samples of automobile petrol of different types being in sale were measured. Samples of automobile petrol diluted in hexane were prepared and their luminescence spectra were measured at room and liquid nitrogen temperatures of samples. We constructed concentration dependences of luminescence intensity of both wide band luminescence of liquid solutions obtained at room temperature and peak intensities of luminescence lines of quasi linear spectra of solutions frozen at 77 K. Possibility to use luminescence method for analysis of petrol pollutions on some objects is illustrated by results of investigation of pine-wood pieces contaminated by automobile petrol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adic.200590101 | DOI Listing |
Talanta
January 2025
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China. Electronic address:
Formaldehyde (HCHO) is a harmful volatile organic pollutant, which is commonly found in interior decoration and furniture products. Therefore, it is necessary to develop a gas sensor that can quickly and accurately detect formaldehyde for human health and environmental protection. In order to achieve this goal, in this work, SnS/SnO heterostructure was synthesized by in-situ sulfurization process on the basis of SnO nanospheres, and its formaldehyde sensing performance was studied.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Agricultural Engineering, Technical and Vocational University, Tehran, Iran.
With the growing need for sustainable transportation solutions, understanding the relationship between driving characteristic parameters, vehicle type, and their impact on emissions and fuel consumption over real driving scenarios is becoming increasingly important. In this paper, four conventional vehicles and one hybrid vehicle with different technologies were compared in four distinct routes in Tehran city. Nineteen real driving cycles were generated using widely employed K-means and PCA algorithms.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Université de Toulouse, CNRS, UPS, 7 Avenue du Colonel Roche, 31031 Toulouse, France.
The need for odor measurement and pollution source identification in various sectors (aeronautic, automobile, healthcare…) has increased in the last decade. Multisensor modules, such as electronic noses, seem to be a promising and inexpensive alternative to traditional sensors that were only sensitive to one gas at a time. However, the selectivity, the non-repetitiveness of their manufacture, and their drift remain major obstacles to the use of electronic noses.
View Article and Find Full Text PDFToxics
November 2024
Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH / National Research Institute, Warsaw, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!