An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adic.200590099DOI Listing

Publication Analysis

Top Keywords

microg m-3
32
direct gravimetric
12
gravimetric measurements
8
aerosol collected
8
collected high
8
high volume
8
terra nova
8
nova bay
8
microg
8
m-3
8

Similar Publications

Article Synopsis
  • * The X-ray process enhances mercury oxidation by producing electrons, while an electric field directs oxidized mercury to bond with the nanofiber mat.
  • * The study found that the process captures mercury in two ways: chemically (0.2 to 10 ng in total) and on the surface of the fibers (10 microg/m per minute), providing a promising solution to reduce emissions from coal power plants.
View Article and Find Full Text PDF

Objective: We examined whether the risk of stillbirth was related to ambient air pollution in a UK population.

Design: Prospective case-control study.

Setting: Forty-one maternity units in the UK.

View Article and Find Full Text PDF

To explore the diurnal and seasonal characteristics of PM25, hourly PM25 concentration data ol It tixed monitoring sites in Chongqing urban area were collected continuously from June 2014 to May 2015. The result showed that: (1) the seasonal concentration of PM2.5 in different seasons decreased in the order of winter, autumn, spring and summer (P < 0.

View Article and Find Full Text PDF

Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area.

View Article and Find Full Text PDF

Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!