Exogenous microorganisms often are used to enhance bioremediation. This study compared the capabilities of two exogenous microbial cultures and an indigenous population to detoxify a Weswood silt loam soil amended with a simple chemical mixture. The first three treatments were unamended soils inoculated with either indigenous microorganisms, Pseudomonas aeruginosa, or Phanerochaete sordida. Three additional treatments consisted of soil amended with benzo[a]pyrene, pentachlorophenol, and 2,4,6-trinitrotoluene, which were inoculated with either indigenous microorganisms, P. aeruginosa, or P. sordida. Samples were collected from the soils at several time points from 0 through 540 or 720 d, sequentially extracted with methylene chloride and methanol, and analyzed for genotoxicity (using the Salmonella/microsome assay) and chemical degradation. Although the indigenous microorganisms were effective for removal of benzo[a]pyrene, the Pseudomonas bacteria exhibited slightly greater removal rates for 2,4,6,-trinitrotoluene. The fungal cultures were significantly more effective at degrading pentachlorophenol. The day 540 extracts from all model chemical-amended treatments were genotoxic. In most cases, the day 540 extracts were more genotoxic than the day 0 extracts. The results suggest that, under appropriate conditions, enriched cultures of microorganisms may have an increased capacity to degrade individual chemicals. However, the products of degradation in some cases might be more genotoxic than the parent compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/04-630r.1 | DOI Listing |
Int J Mol Sci
December 2024
Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
The presented study investigated the possibility of using the MC5 strain, isolated from raw sewage by the enrichment culture method, in the bioremediation of soil contaminated with selected NSAIDs, i.e., ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX), using the bioaugmentation technique.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China. Electronic address:
Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
The aim of this study was to compare the succession of natural microbiota in pork held under refrigerated storage for up to 10 days after dielectric barrier discharge (DBD) plasma treatment. Two methods were used to assess the impact of DBD on microorganisms. Firstly, traditional selective media (SM) were employed to detect the bactericidal effects of DBD on spp.
View Article and Find Full Text PDFBioresour Technol
January 2025
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!