AI Article Synopsis

  • The study investigates how phenanthrene, a type of pollutant, breaks down in soil with different strains of bacteria that can degrade it, using a series of lab tests.
  • Over six months, the degradation rates varied due to changes in the microbial community, indicating complex interactions among the bacteria that affect biodegradation.
  • Experiments with sterilized soil and specific bacterial isolates showed both positive (synergistic) and negative (antagonistic) interactions that impacted the effectiveness of phenanthrene breakdown.

Article Abstract

The biodegradation and transport of phenanthrene in porous media containing multiple populations of phenanthrene degraders is examined with a series of miscible-displacement experiments. A long-term experiment was conducted with a soil containing an indigenous microbial community comprised of 25 identified phenanthrene-degrading isolates. The rate and magnitude of phenanthrene biodegradation oscillated throughout the six-month experiment. This behavior, at least in part, is attributed to multiple-population dynamics associated with the indigenous community of phenanthrene degraders, the composition of which changed during the experiment. This hypothesis is supported by the results of experiments conducted using sterilized porous media that were inoculated with selected isolates obtained from the indigenous soil community. The results of experiments conducted with sterilized soil inoculated with isolate A exhibited an initial extended period of steady phenanthrene effluent concentrations, followed by a uniform decline. The results of experiments conducted using sterilized sand for single-isolate systems with one of three selected isolates and for systems of two-isolate combinations, indicate the existence of apparent synergistic and antagonistic interactions among the isolates. For example, phenanthrene biodegradation was relatively extensive and occurred without a lag phase for isolate A alone. However, biodegradation was constrained when isolate A and B were combined, indicating an antagonistic interaction. Conversely, whereas extensive lag phases were exhibited by both isolates B and C for the single-isolate experiments, there was minimal lag when isolates B and C were combined, indicating a synergistic interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1897/05-125r.1DOI Listing

Publication Analysis

Top Keywords

porous media
12
experiments conducted
12
conducted sterilized
12
phenanthrene degraders
8
phenanthrene biodegradation
8
selected isolates
8
combined indicating
8
phenanthrene
6
isolates
6
biodegradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!