Bone marrow angiogenesis plays an important role in the pathogenesis and progression in multiple myeloma. Recent studies have shown that proteasome inhibitor bortezomib (Velcade, formerly PS-341) can overcome conventional drug resistance in vitro and in vivo; however, its antiangiogenic activity in the bone marrow milieu has not yet been defined. In the present study, we examined the effects of bortezomib on the angiogenic phenotype of multiple myeloma patient-derived endothelial cells (MMEC). At clinically achievable concentrations, bortezomib inhibited the proliferation of MMECs and human umbilical vein endothelial cells in a dose-dependent and time-dependent manner. In functional assays of angiogenesis, including chemotaxis, adhesion to fibronectin, capillary formation on Matrigel, and chick embryo chorioallantoic membrane assay, bortezomib induced a dose-dependent inhibition of angiogenesis. Importantly, binding of MM.1S cells to MMECs triggered multiple myeloma cell proliferation, which was also abrogated by bortezomib in a dose-dependent fashion. Bortezomib triggered a dose-dependent inhibition of vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) secretion by the MMECs, and reverse transcriptase-PCR confirmed drug-related down-regulation of VEGF, IL-6, insulin-like growth factor-I, Angiopoietin 1 (Ang1), and Ang2 transcription. These data, therefore, delineate the mechanisms of the antiangiogenic effects of bortezomib on multiple myeloma cells in the bone marrow milieu.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-1195DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
20
endothelial cells
12
bone marrow
12
bortezomib
8
cells bone
8
marrow milieu
8
effects bortezomib
8
dose-dependent inhibition
8
multiple
5
myeloma
5

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM.

View Article and Find Full Text PDF

Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).

Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.

View Article and Find Full Text PDF

Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!