A laboratory experiment was performed to estimate the elemental composition of rhizomorphs of an ectomycorrhizal (EM) fungus growing in a patchy environment. Successive samples of Rhizopogon rhizomorphs, located adjacent to patches with organic matter or patches with acid-washed sand, were taken over a period of 45 d. The mass per unit area was analyzed with scanning transmission ion microscopy (STIM), and the elemental content of elements heavier than Mg were analyzed with particle induced X-ray emission (PIXE). Rhizomorphs associated with the organic matter on average were three times heavier per unit area than rhizomorphs associated with sand. The Ca concentration (mg g(-1)) increased in rhizomorphs adjacent to patches with sand, while it decreased in rhizomorphs adjacent to patches with organic matter. Fe concentration was higher in rhizomorphs adjacent to patches with sand. We concluded that the EM fungus responded to the organic matter by producing larger rhizomorphs, rather than increasing the concentration of elements in the rhizomorphs, to improve the transport of elements to the roots. The elemental composition of rhizomorphs varied considerably over time, and the accumulation of Ca in rhizomorphs in the sand-filled compartments could be the effect of acropetal flow of solutes from the plant roots toward the mycelial front.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3852/mycologia.97.2.295 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Environmental Science, Stockholm University, Sweden.
In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA.
Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.
Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!