Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer.

Evolution

Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093-0218, USA.

Published: November 2005

Although theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently distinguished sympatric, circumglobal sister species, Eucalanus hyalinus and Eucalanus spinifer, for population genetic structure throughout their global biogeographic ranges. Here I show that oceanic zooplankton species can be highly genetically structured on macrogeographic spatial scales, despite experiencing extensive gene flow within features of the large-scale ocean circulation. Mitochondrial DNA analyses of 450 and 383 individuals of E. hyalinus and E. spinifer, respectively, revealed that habitat discontinuities at the boundaries of subtropical gyres in the North and South Pacific, as well as continental land masses, acted as effective barriers to gene flow for both species. However, the impact of specific barriers on population genetic structure varied between the sister species, despite their close phylogenetic relationship and similar circumglobal biogeogeographic distributions. The sister species differed in their oceanographic distributions, with E. spinifer dominating oligotrophic waters of the subtropical gyres and E. hyalinus more abundant along central water mass boundaries and in frontal zones and upwelling systems. This species-specific difference in the oceanographic habitat is an important factor determining the historical and contemporary patterns of dispersal of the two species. I suggest that species-specific ecological differences are likely to be a primary determinant of population genetic structure of open-ocean plankton.

Download full-text PDF

Source

Publication Analysis

Top Keywords

population genetic
16
genetic structure
16
gene flow
12
sister species
12
eucalanus hyalinus
8
hyalinus spinifer
8
open-ocean plankton
8
subtropical gyres
8
species
7
genetic
5

Similar Publications

Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).

View Article and Find Full Text PDF

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!