Directional light scanning laser ophthalmoscope.

J Opt Soc Am A Opt Image Sci Vis

Laboratorio de Optica, Universidad de Murcia, Campus de Espinardo (Edificio C), 30071 Murcia, Spain.

Published: December 2005

The cone photoreceptor mosaic of the living human eye has in a limited number of cases been imaged without the use of wavefront-correction techniques. To accomplish this, the directionality of the photoreceptors, as manifested by their waveguiding properties, may be used to advantage. In the present paper we provide a model of our recently proposed directional light scanning laser ophthalmoscope [Opt. Lett. 29, 968 (2004)] together with a detailed numerical analysis of the device. The outcome is compared with experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.22.002606DOI Listing

Publication Analysis

Top Keywords

directional light
8
light scanning
8
scanning laser
8
laser ophthalmoscope
8
ophthalmoscope cone
4
cone photoreceptor
4
photoreceptor mosaic
4
mosaic living
4
living human
4
human eye
4

Similar Publications

Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap)

October 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.

Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.

View Article and Find Full Text PDF

Dark-Field Absorbance Circular Dichroism of Oriented Chiral Thin Films.

J Phys Chem Lett

January 2025

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Dark-field and confocal approaches to circular dichroism (CD) spectroscopy of uniaxial thin films examine the relationship between symmetry and incoherence in the nonreciprocal CD response, or the component that is antisymmetric about the light propagation direction. Modifying a conventional CD spectrometer for low-angle scattering detection isolates incoherent contributions to nonreciprocal CD of drop-cast thin films, boasting 5-to-10-fold enhancements in CD dissymmetry parameters. Conversely, confocal detection suppresses the nonreciprocal CD response.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Constructing a built-in electric field by grafting strong electronegative small molecules for photocatalytic H production.

Chem Commun (Camb)

January 2025

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.

Asymmetric carbon nitride (FCN) is developed by grafting strong electronegative small molecules onto CN. The introduction of these small molecules enhances the visible light absorption range and redistributes the charge density. Combining DRS, KPFM, and DFT results, it is revealed that the strong built-in electric field and the effective spatial separation of redox sites contribute to the directional charge separation and migration for superior photocatalytic H evolution.

View Article and Find Full Text PDF

Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are essential for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limited wavenumber/frequency response. To address these challenges a novel method was developed, using polarization filter equipped camera as the main sensor and Machine Learning (ML) algorithms for data processing [1,2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!