The interfacial partitioning behavior of ampicillin and phenylglycine crystals in different two-phase systems has been investigated. The two-phase systems employed are water/dodecane, water/1-butanol, and water/pentane/methanol. By means of partition experiments and microscopic imaging, it has been shown that the mechanism of separation strongly depends on the choice of the two-phase system. While water/dodecane features a mechanism of sheer competitive adsorption at the interface, separation in water/1-butanol is mainly due to partitioning into both liquid phases, leading to a higher degree of separation. Experiments with water/pentane/methanol have illustrated the large potential of three-component systems, as slight variations in the composition can have large effects on the separation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.20653DOI Listing

Publication Analysis

Top Keywords

two-phase systems
12
interfacial partitioning
8
separation
5
investigation characterization
4
characterization liquid
4
two-phase
4
liquid two-phase
4
systems
4
systems separation
4
separation crystal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!