We investigated the influence of a representative classical benzodiazepine on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis activity both under basal conditions and stress. Adult male Wistar rats were intravenously administered with temazepam (0.5, 1, and 3 mg/kg body weight) and plasma concentrations of corticotropin (ACTH) and vasopressin (AVP) were measured in blood samples collected via chronically implanted jugular venous catheters. Simultaneously, the release of AVP within the hypothalamic paraventricular nucleus (PVN) was monitored via microdialysis. Plasma AVP levels remained unaffected by the different treatment conditions. Temazepam blunted the stressor exposure-induced secretion of ACTH in a dose-dependent manner. Concurrently, and also in a dose-dependent manner temazepam enhanced the intra-PVN release of AVP, known to originate from magnocellular neurons of the hypothalamic neurohypophyseal system. Furthermore, temazepam did not affect the in vitro secretion of ACTH from the adenohypophyseal cells. Taken together, the results of this study suggest that temazepam modulates the central nervous regulation of the HPA axis by altering intra-PVN AVP release. An increasingly released AVP of magnocellular origin seems to provide a negative tonus on ACTH secretion most probably via inhibiting the release of ACTH secretagogues from the median eminence into hypophyseal portal blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1301006 | DOI Listing |
Neurosci Bull
January 2025
Department of Neurology of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.
View Article and Find Full Text PDFVitam Horm
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.
View Article and Find Full Text PDFVitam Horm
January 2025
Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan. Electronic address:
3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!