We investigated the clinical usefulness of a newly developed flat-panel detector (FPD) system by comparing its physical imaging properties and low-contrast detectability with those of a current FPD system. The newly developed CsI-based indirect FPD (Canon, CXDI-40C) and current Gd(2)O(2)S-based FPD (Canon CXDI-11) systems were used. Characteristic curves, resolution properties, radiographic noise, detective quantum efficiencies (DQEs) and low-contrast detectability for both systems were measured. The new FPD system showed considerably lower noise levels than those of the current FPD system. DQE (0) s of the new and current FPD systems were 75% and 35%, respectively. Observer performance tests of the contrast-detail (C-D) phantom indicated that the new FPD system can significantly improve low-contrast performance over that obtainable with the current FPD system under the same conditions of exposure. The new FPD system provided approximately 50% reduction in exposure while providing comparable detectability. The newly developed FPD system provides radiographic images with excellent inherent physical image quality and low-contrast performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.kj00004017357 | DOI Listing |
Biosens Bioelectron
December 2024
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:
Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar.
Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.
Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.
China CDC Wkly
November 2024
National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Introduction: This study aimed to provide a comprehensive analysis of the human immunodeficiency virus (HIV) epidemiological landscape in China through a historical review and current assessment.
Methods: Data were extracted from China's HIV/AIDS Comprehensive Response Information Management System (CRIMS). Transmission patterns across different phases were visualized using stacked area charts.
BMC Pharmacol Toxicol
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: In the past few years, an increasing number of research studies have documented the utilization of durvalumab in the field of immunotherapy for cancerous tumors. However, there remains insufficient documentation regarding its associated adverse event (AEs). In order to enhance our comprehension of its toxicological profile, this investigation retrospectively examined the AEs linked to durvalumab using data from the US Food and Drug Administration adverse event reporting system (FAERS).
View Article and Find Full Text PDFMed Phys
December 2024
Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Background: Recently, the popularity of dual-layer flat-panel detector (DL-FPD) based dual-energy cone-beam CT (CBCT) imaging has been increasing. However, the image quality of dual-energy CBCT remains constrained by the Compton scattered x-ray photons.
Purpose: The objective of this study is to develop a novel scatter correction method, named e-Grid, for DL-FPD based CBCT imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!