Molecular research technologies in mitochondrial diseases: the microarray approach.

IUBMB Life

Center for Molecular and Mitochondrial Medicine and Genetics, Department of Biological Chemistry, University of California, Irvine, California 92697-3940, USA.

Published: December 2005

Mitochondria are ubiquitous in eukaryotic cells where they generate much of the cellular energy by the process of oxidative phosphorylation (OXPHOS). The approximately 1500 genes of the mitochondrial genome are distributed between the cytoplasmic, maternally-inherited, mitochondrial DNA (mtDNA) which encodes 37 genes and the nuclear DNA (nDNA) which encompasses the remaining mitochondrial genes. The interplay between the mtDNA and nDNA encoded mitochondrial genes and their role in mitochondrial disorders is still largely unclear. One approach for elucidating the pathophysiology of mitochondrial diseases has been to look at changes in the expression of mtDNA and nDNA-encoded genes in response to specific mitochondrial genetic defects. Initial studies of gene expression changes in response to mtDNA defect employed blot technologies to analyze changes in the expression of individual genes one at a time. While Southern/Northern blot experiments confirmed the importance of nDNA-mtDNA interactions in the pathophysiology of mitochondrial myopathy, the methodology used limited the number of genes that could be analyzed from each patient. This barrier has been overcome, in part by the advent of DNA microarray technology. In DNA microarrays gene sequences or oligonucleotides homologous to gene sequences are arrayed on a solid support. The RNA from the subject is then isolated, the mRNA converted to cDNA and the cDNA labeled with a fluorescent probe. The labeled cDNA is hybridized on the microarray and the fluorescence bound to each array is then quantified. Recently, these technologies have been applied to mitochondrial disease patient tissues and the presence of coordinate changes in mitochondrial gene expression confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15216540500460269DOI Listing

Publication Analysis

Top Keywords

mitochondrial
11
mitochondrial diseases
8
mitochondrial genes
8
pathophysiology mitochondrial
8
changes expression
8
gene expression
8
gene sequences
8
genes
7
molecular technologies
4
technologies mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!