Vitallium.

J Long Term Eff Med Implants

Department of Oral Health Practice, Division of Restorative Dentistry, College of Dentistry, University of Kentucky, Lexington, Kentucky 40536-0297, USA.

Published: March 2006

Vitallium is a base metal alloy that has been used in dentistry and medicine since 1929. This article will focus on the historical perspectives of Vitallium and include the dental and medical applications used today. The physical and chemical properties of Vitallium will be discussed, with particular emphasis on the biocompatibility of the metal. Finally, the future uses of Vitallium will be examined, as will the potential dangers in fabricating prostheses using this base metal alloy.

Download full-text PDF

Source
http://dx.doi.org/10.1615/jlongtermeffmedimplants.v15.i6.90DOI Listing

Publication Analysis

Top Keywords

base metal
8
metal alloy
8
vitallium will
8
vitallium
4
vitallium vitallium
4
vitallium base
4
alloy dentistry
4
dentistry medicine
4
medicine 1929
4
1929 article
4

Similar Publications

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.

View Article and Find Full Text PDF

A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.

View Article and Find Full Text PDF

Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution.

Dalton Trans

January 2025

Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock HO into energy-rich molecular H. Herein, two families of pyridazine-based cryptates, mononuclear [MLi](BF) and mixed metal dinuclear [MCuLi](BF) (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnCuLi](BF), and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnLi](BF)·0.

View Article and Find Full Text PDF

The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!