The effects of high-linear energy transfer (LET) radiation on immune function have not been clearly established. The major goal of this study was to evaluate leukocyte responses after whole-body exposure to high-LET radiation. C57BL/6 mice were exposed to 0, 0.5, 2 and 3 Gy (56)Fe(26+) particles (1055 MeV/nucleon, 148.2 keV/microm) and killed humanely 4 days after exposure. Spontaneous synthesis of DNA in blood and spleen cells was increased significantly in groups receiving either 2 or 3 Gy (P < 0.001). In contrast, a significant depression in the response of T lymphocytes to phytohemagglutinin (PHA) and concanavalin A (ConA) was noted (P < 0.005); the response to lipopolysaccharide (LPS), a B-cell mitogen, was similar among groups. A cytometric bead array assay revealed that the level of tumor necrosis factor alpha (Tnfa) secreted by splenocytes increased significantly with increasing (56)Fe-particle dose (P < 0.05); interferon gamma, interleukin2 (Il2), Il4 and Il5 were unaffected. Flow cytometry analysis showed that 2 and 3 Gy markedly reduced splenic mononuclear cells expressing the activation markers CD25 and CD71, both with and without the T-cell marker CD3 (P < 0.05); proportions also varied significantly. Similar patterns were noted in mononuclear and granular cells with adhesion markers CD11b and, to a lesser extent, CD54 (P < 0.05). The results show that a single, acute exposure to high-LET radiation induced changes that can profoundly alter leukocyte functions. The implications of the data are discussed in relation to low-LET radiation, altered gravity, and space flight.

Download full-text PDF

Source
http://dx.doi.org/10.1667/rr3490.1DOI Listing

Publication Analysis

Top Keywords

exposure high-let
8
high-let radiation
8
radiation
5
acute effects
4
effects iron-particle
4
iron-particle radiation
4
radiation immunity
4
immunity leukocyte
4
leukocyte activation
4
activation cytokines
4

Similar Publications

The radium dial painters (RDP) are a well-described group of predominantly young women who incidentally ingested 226Ra and 228Ra as they painted luminescent watch dials in the first part of the twentieth century. In 1974 pathologist Dr. William D.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: Evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.

View Article and Find Full Text PDF

Fractionated alpha and mixed beam radiation promote stronger pro-inflammatory effects compared to acute exposure and trigger phagocytosis.

Front Cell Neurosci

December 2024

Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

Introduction And Methods: Aiming to evaluate safety aspects of a recently proposed approach to target Alzheimer's disease, we mimicked a complex boron neutron capture therapy field using a mixed beam consisting of high- and low-linear energy transfer (LET) radiation, Am alpha particles (α) and/or X-ray radiation respectively, in human microglial (HMC3) cells.

Results: Acute exposure to 2 Gy X-rays induced the strongest response in the formation of γH2AX foci 30 min post irradiation, while α- and mixed beam-induced damage (α:X-ray = 3:1) sustained longer. Fractionation of the same total dose (0.

View Article and Find Full Text PDF

FLASH Bragg-Peak Irradiation With a Therapeutic Carbon Ion Beam: First In Vivo Results.

Int J Radiat Oncol Biol Phys

November 2024

GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Life Science Engineering Department, Technische Hochschule Mittelhessen, Gießen, Germany.

Purpose: In recent years, ultra-high dose rate (UHDR) irradiation has emerged as a promising innovative approach to cancer treatment. Characteristic feature of this regimen, commonly referred to as FLASH effect, demonstrated primarily for electrons, photons, or protons, is the improved normal tissue sparing, whereas the tumor control is similar to the one of the conventional dose-rate (CDR) treatments. The FLASH mechanism is, however, unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!