A current target of cancer gene therapy is tumour vasculature. We present a gene-directed enzyme prodrug therapy (GDEPT) approach to target tumours in vivo by modifying endothelial cells (ECs) with the Escherichia coli nitroreductase (ntr) gene. Firstly, we isolated two ntr-transfected clones of the human umbilical vein endothelial cell line (HUV-EC-C/ntr+) that showed a differential sensitivity in vitro to the prodrug, dinitroaziridinylbenzamide (CB1954), with respect to untransfected HUV-EC-C cells (HUV-EC-C/ntr-). Then, these cells were injected subcutaneously into nude mice, either in association with the murine melanoma cell line, B16-F10 ('co-injected' groups), or into tumour-bearing animals ('post-injected' groups). After intratumoural injection, we demonstrated, using PCR analysis, that human ECs resided in the site of the injection without spreading to other organs, such as the liver or lung. After the treatment of mice with CB1954, we observed a prolonged survival of animals carrying the HUV-EC-C/ntr+ clones with respect to control animals injected with HUV-EC-C/ntr- cells. Significant differences in tumour growth were also observed and, after immuno-histological analysis, tumours carrying HUV-EC-C/ntr+ clones showed large areas of tumour necrosis, probably due to tumour ischemia, as well as the presence of major histocompatibility complex class-II (MHC-II) positive cells. Collectively, our data indicate that targeting of the tumour vasculature by this GDEPT strategy may be an efficient approach for cancer treatment in vivo, depending on two possible bystander mechanisms based on tumour ischemia and immune cell activation.
Download full-text PDF |
Source |
---|
Shock
January 2025
The University of Alabama, Birmingham, Department of Surgery and Center for Injury Science, Division of Trauma and Acute Care Surgery, Birmingham, AL.
Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.
View Article and Find Full Text PDFScience
January 2025
Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.
View Article and Find Full Text PDFStem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFJCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!