Hepatocellular carcinoma (HCC) is a common malignancy, but the prognosis remains poor due to the lack of sensitive diagnostic markers. To gain insight into the central molecular features common to all types of HCC, and to identify novel diagnostic markers or therapeutic targets for HCC, we performed a gene expression profiling analysis using a high throughput RT-PCR system. After examining the mRNA expression of 3,072 genes in 204 (119 tumor and 85 non-tumor) liver samples, we identified differential gene expression between the HCV group (n=80), HBV group (n=19) and non-B, non-C group (n=20) with a principal component analysis and a correlation spectrum analysis. After selection of genes differentially expressed between tumor and non-tumor tissues (p<0.01) within each HCC group, a total of 51 differentially expressed genes (23 upregulated and 28 downregulated genes) were found to be common to the three HCC groups. Gene Ontology grouping analysis revealed that genes with functions related to cell proliferation or differentiation and genes encoding extracellular proteins were found to be significantly enriched in these 51 common genes. Using an atelocollagen-based cell transfection array for functional analysis of eight upregulated genes, five (CANX, FAM34A, PVRL2, LAMR1, and GBA) significantly inhibited cellular apoptosis by two independent assays. In conclusion, we identified 51 differentially expressed genes, common to all HCC types. Among these genes, there was a high incidence of anti-apoptotic activity. This combination approach with the advanced statistical methods and the bioinformatical analysis may be useful for finding novel molecular targets for diagnosis and therapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

non-b non-c
8
hepatocellular carcinoma
8
identify novel
8
diagnostic markers
8
gene expression
8
tumor non-tumor
8
central genetic
4
genetic alterations
4
alterations common
4
common hcv-positive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!