Role of gamma-aminobutyricacidB(GABA(B)) receptors in the regulation of kainic acid-induced cell death in mouse hippocampus.

Exp Mol Med

Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 200-702, Korea.

Published: December 2005

Kainic acid (KA) is well-known as an excitatory, neurotoxic substance. In mice, KA administered intracerebroventricularly (i.c.v.) lead to morphological damage of hippocampus expecially concentrated on the CA3 pyramidal neurons. In the present study, the possible role of gamma-aminobutyric acid B (GABA(B)) receptors in hippocampal cell death induced by KA (0.1 microg) administered i.c.v. was examined. 5-Aminovaleric acid (5-AV; GABA(B) receptors antagonist, 20 mug) reduced KA-induced CA3 pyramidal cell death. KA increased the phosphorylated extracellular signal-regulated kinase (p-ERK) and Ca(2+)/calmodulin-dependent protein kinase II (p-CaMK II) immunoreactivities (IRs) 30 min after KA treatment, and c-Fos, c-Jun IR 2 h, and glial fibrillary acidic protein (GFAP), complement receptor type 3 (OX-42) IR 1 day in hippocampal area in KA-injected mice. 5-AV attenuated KA-induced p-CaMK II, GFAP and OX-42 IR in the hippocampal CA3 region. These results suggest that p-CaMK II may play as an important regulator on hippocampal cell death induced by KA administered i.c.v. in mice. Activated astrocytes, which was presented by GFAP IR, and activated microglia, which was presented by the OX-42 IR, may be a good indicator for measuring the cell death in hippocampal regions by KA excitotoxicity. Furthermore, it showed that GABA(B) receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1038/emm.2005.66DOI Listing

Publication Analysis

Top Keywords

cell death
24
ca3 pyramidal
12
gabab receptors
12
death induced
12
administered icv
12
hippocampal cell
8
pyramidal cell
8
hippocampal ca3
8
induced administered
8
icv mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!