Horizontal gene transfer (HGT) is generally considered a possible mechanism by which bacteria acquire new genetic properties. Especially when pathogenicity genes are involved, HGT might have important consequences for humans. In this report we describe a case study of HGT in which a transcriptional activator, ComK of Bacillus subtilis, was introduced into a heterologous host species, Lactococcus lactis. ComK is the central regulator of competence development, activating transcription by binding to a ComK-binding site, a so-called K-box. Interestingly, L. lactis does not contain a comK gene, but it does contain almost 400 putatively functional K-boxes, as well as homologues of a number of competence genes. In this study, the effect of HGT of B. subtilis comK into L. lactis was investigated by determining the effects on the transcription profile using DNA microarray analyses. Production of wild-type ComK was shown to stimulate the transcription of 89 genes and decrease the expression of 114 genes. Notably, potential direct effects (i.e., genes preceded by a K-box) were found mainly among repressed genes, suggesting that ComK functions as a repressor in L. lactis. This is a remarkable difference between L. lactis and B. subtilis, in which ComK almost exclusively activates transcription. Additional DNA microarray analyses with a transcription activation-deficient but DNA-binding ComK variant, ComKDeltaC25, demonstrated that there were similar effects on gene regulation with this variant and with wild-type ComK, confirming that the direct effects of ComK result from interference with normal transcription through binding to available K-boxes. This study demonstrates that horizontal gene transfer can have dramatic effects that are very different than those that are expected on basis of the original functionality of a gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352259 | PMC |
http://dx.doi.org/10.1128/AEM.72.1.404-411.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!