Much remains to be learned about how cell-cell and cell-matrix interactions are coordinated to influence the earliest development of neoplasia. We used novel 3D human tissue reconstructs that mimic premalignant disease in normal epidermis, to directly investigate how loss of E-cadherin function directs conversion to malignant disease. We used a genetically tagged variant of Ha-Ras-transformed human keratinocytes (II-4) expressing dominant-interfering E-cadherin fusion protein (H-2k(d)-Ecad). These cells were admixed with normal human keratinocytes and tumor cell fate was monitored in 3D reconstructed epidermis upon transplantation to immunodeficient mice. Tumor initiation was suppressed in tissues harboring control- and mock-infected II-4 cells that lost contact with the stromal interface. By contrast, H-2k(d)-Ecad-expressing cells persisted at this interface, thus enabling incipient tumor cell invasion upon in vivo transplantation. Loss of intercellular adhesion was linked to elevated cell surface expression of alpha2, alpha3 and beta1 integrins and increased adhesion to laminin-1 and Types I and IV collagen that was blocked with beta1-integrin antibodies, suggesting that invasion was linked to initial II-4 cell attachment at the stromal interface. Collectively, these results outline a novel aspect to loss of E-cadherin function that is linked to the mutually interdependent regulation of cell-cell and cell-matrix adhesion and has significant consequences for the conversion of premalignancy to cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.02738 | DOI Listing |
Lab Chip
December 2024
CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages.
View Article and Find Full Text PDFMath Biosci Eng
November 2024
School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia.
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biological Sciences, University of Denver, Denver, CO 80208.
The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, , and compared them to proteins involved in cell interactions in Bilateria.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
Chordomas are rare, generally slow-growing spinal tumors that nonetheless exhibit progressive characteristics over time, leading to malignant phenotypes and high recurrence rates, despite maximal therapeutic interventions. The tumors are notoriously resistant to therapies and are often located in regions that complicate achieving gross total resections. Cell lines from these tumors are rare as well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!