Background And Objective: Despite the introduction of various less-invasive concepts of cardiac output measurement, pulmonary arterial thermodilution is still the most common measurement technique.

Methods: This prospective controlled study was designed to compare different methods of cardiac output measurement simultaneously. Pulmonary arterial thermodilution, transpulmonary thermodilution (PiCCO), trans-oesophageal echo-Doppler probe (HemoSonic) and partial carbon dioxide rebreathing technique (NICO monitor) were evaluated against a peri-aortic transit-time flow-probe as reference method in a clinically relevant animal model. After approval from the Local Ethics Committee on Animal Research, the investigations were conducted in nine anesthetized domestic pigs. Systemic haemodynamics were modulated systematically by the application of catecholamines, caval occlusion and exsanguination. Statistical analysis was performed with Bland-Altman and linear regression.

Results: A total of 366 paired cardiac output measurements were carried out at a reference cardiac output between 0.5 and 7 L min(-1). The correlation coefficients for pulmonary arterial and transpulmonary thermodilution against reference were 0.93 and 0.95, for trans-oesophageal Doppler and partial rebreathing technique 0.84 and 0.77. Pulmonary arterial thermodilution and transpulmonary thermodilution showed comparable bias and limits of agreement. Where HemoSonic showed an overestimation of cardiac output at a higher precision, NICO overestimated low and underestimated higher cardiac output values.

Conclusions: Our data suggest that pulmonary arterial thermodilution and PiCCO may be interchangeably used for cardiac output measurement even under acute haemodynamic changes. The method described by Bland and Altman demonstrated an overestimation of cardiac output for both thermodilution methods. HemoSonic and NICO offer non-invasive alternatives and complementary monitoring tools in numerous clinical situations. Trend monitoring and haemodynamic optimizing can be applied sufficiently, when absolute measures are judged critically in a clinical context. The use of the NICO system seems to be limited during acute circulatory changes.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0265021505001717DOI Listing

Publication Analysis

Top Keywords

cardiac output
36
pulmonary arterial
20
output measurement
16
arterial thermodilution
16
transpulmonary thermodilution
12
cardiac
9
output
9
thermodilution
8
thermodilution transpulmonary
8
thermodilution picco
8

Similar Publications

This study aimed to evaluate the hemodynamic and ventricular performance of neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia using conventional and advanced echocardiographic techniques. This observational, prospective study included 22 neonates with HIE matched with 22 healthy neonates. Echocardiographic studies were performed 24 h after achieving target temperature during hypothermia and 24 h after rewarming.

View Article and Find Full Text PDF

Intraoperative hemodynamic monitoring is crucial for managing patients with end-stage liver disease (ESLD) undergoing orthotopic liver transplantation (OLT) due to their complex cardiovascular and pulmonary abnormalities. Traditionally, pulmonary artery catheterization (PAC) has been the standard for hemodynamic monitoring during OLT. However, the use of transesophageal echocardiography (TEE) has increased due to its real-time visualization of cardiac and vascular structures, which aids in managing hemodynamic instability during the three surgical phases of OLT: pre-anhepatic, anhepatic, and neo-hepatic.

View Article and Find Full Text PDF

Sepsis-induced myocardial dysfunction (SIMD) involves reversible myocardial dysfunction. The use of inotropes can restore adequate cardiac output and tissue perfusion, but conventional inotropes, such as dobutamine and adrenaline, have limited efficacy in such situations. Levosimendan is a novel inotrope that acts in a catecholamine-independent manner.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) plays a pivotal role in the interplay between metabolic disorders and heart failure with preserved ejection fraction (HFpEF). Various non-insulin-based indices emerge as reliable surrogate markers for assessing IR, including the triglyceride-glucose (TyG) index, the TyG index with body mass index (TyG-BMI), atherogenic index of plasma (AIP), and the metabolic score for insulin resistance (METS-IR). However, the ability of different IR indices to predict outcome in HFpEF patients has not been extensively explored.

View Article and Find Full Text PDF

An interactive simulator to deepen the understanding of Guyton's venous return curve.

J Physiol Sci

January 2025

Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, 252-0374, Sagamihara, Kanagawa, Japan.

Mean circulatory filling pressure, venous return curve, and Guyton's graphical analysis are basic concepts in cardiovascular physiology. However, some medical students may not know how to view and interpret or understand them adequately. To deepen students' understanding of the graphical analysis, in place of having to perform live animal experiments, we developed an interactive cardiovascular simulator, as a self-learning tool, as a web application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!