The demonstration that mouse somatic cells can be reprogrammed following fusion with embryonic stem (ES) cells may provide an alternative to somatic cell nuclear transfer (therapeutic cloning) to generate autologous stem cells. In an attempt to produce cells with an increased pool of reprogramming factors, tetraploid ES cells were produced by polyethylene glycol mediated fusion of two ES cell lines transfected with plasmids carrying puromycin or neomycin resistance cassettes, respectively, followed by double antibiotic selection. Tetraploid ES cells retain properties characteristic of diploid ES cells, including the expression of pluripotent gene markers Oct4 and Rex1. On injection into the testis capsule of severe combined immunodeficient (SCID) mice, tetraploid ES cells are able to form teratomas containing cells representative of all three germ layers. Further, these cells demonstrated the ability to integrate into the inner cell mass of blastocysts. This study indicates that tetraploid ES cells are promising candidates as cytoplasm donors for reprogramming studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/clo.2005.7.272 | DOI Listing |
Hum Cell
January 2025
Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.
View Article and Find Full Text PDFPlant J
January 2025
Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Volcani Institute, Ramat-Yishay, Israel.
Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Voronezh State University, Voronezh, Russia.
Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.
View Article and Find Full Text PDFSci Data
January 2025
Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Chinese cherry belongs to the family Rosaceae, genus Prunus, and has high nutritional and economic value. 'Duiying' is a Chinese cherry variety local to Beijing, and has better performance than sweet cherry in terms of disease resistance. However, disease resistance resources of 'Duiying' have not been fully exploited partially due to the lack of a high-quality genome.
View Article and Find Full Text PDFCell Discov
January 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!